3.162 \(\int \frac{a+b x+d x^3}{2+3 x^4} \, dx\)

Optimal. Leaf size=154 \[ -\frac{a \log \left (\sqrt{3} x^2-2^{3/4} \sqrt [4]{3} x+\sqrt{2}\right )}{8 \sqrt [4]{6}}+\frac{a \log \left (\sqrt{3} x^2+2^{3/4} \sqrt [4]{3} x+\sqrt{2}\right )}{8 \sqrt [4]{6}}-\frac{a \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}+\frac{a \tan ^{-1}\left (\sqrt [4]{6} x+1\right )}{4 \sqrt [4]{6}}+\frac{b \tan ^{-1}\left (\sqrt{\frac{3}{2}} x^2\right )}{2 \sqrt{6}}+\frac{1}{12} d \log \left (3 x^4+2\right ) \]

[Out]

(b*ArcTan[Sqrt[3/2]*x^2])/(2*Sqrt[6]) - (a*ArcTan[1 - 6^(1/4)*x])/(4*6^(1/4)) +
(a*ArcTan[1 + 6^(1/4)*x])/(4*6^(1/4)) - (a*Log[Sqrt[2] - 2^(3/4)*3^(1/4)*x + Sqr
t[3]*x^2])/(8*6^(1/4)) + (a*Log[Sqrt[2] + 2^(3/4)*3^(1/4)*x + Sqrt[3]*x^2])/(8*6
^(1/4)) + (d*Log[2 + 3*x^4])/12

_______________________________________________________________________________________

Rubi [A]  time = 0.262121, antiderivative size = 136, normalized size of antiderivative = 0.88, number of steps used = 15, number of rules used = 10, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5 \[ -\frac{a \log \left (3 x^2-6^{3/4} x+\sqrt{6}\right )}{8 \sqrt [4]{6}}+\frac{a \log \left (3 x^2+6^{3/4} x+\sqrt{6}\right )}{8 \sqrt [4]{6}}-\frac{a \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}+\frac{a \tan ^{-1}\left (\sqrt [4]{6} x+1\right )}{4 \sqrt [4]{6}}+\frac{b \tan ^{-1}\left (\sqrt{\frac{3}{2}} x^2\right )}{2 \sqrt{6}}+\frac{1}{12} d \log \left (3 x^4+2\right ) \]

Antiderivative was successfully verified.

[In]  Int[(a + b*x + d*x^3)/(2 + 3*x^4),x]

[Out]

(b*ArcTan[Sqrt[3/2]*x^2])/(2*Sqrt[6]) - (a*ArcTan[1 - 6^(1/4)*x])/(4*6^(1/4)) +
(a*ArcTan[1 + 6^(1/4)*x])/(4*6^(1/4)) - (a*Log[Sqrt[6] - 6^(3/4)*x + 3*x^2])/(8*
6^(1/4)) + (a*Log[Sqrt[6] + 6^(3/4)*x + 3*x^2])/(8*6^(1/4)) + (d*Log[2 + 3*x^4])
/12

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 31.1556, size = 122, normalized size = 0.79 \[ - \frac{6^{\frac{3}{4}} a \log{\left (3 x^{2} - 6^{\frac{3}{4}} x + \sqrt{6} \right )}}{48} + \frac{6^{\frac{3}{4}} a \log{\left (3 x^{2} + 6^{\frac{3}{4}} x + \sqrt{6} \right )}}{48} + \frac{6^{\frac{3}{4}} a \operatorname{atan}{\left (\sqrt [4]{6} x - 1 \right )}}{24} + \frac{6^{\frac{3}{4}} a \operatorname{atan}{\left (\sqrt [4]{6} x + 1 \right )}}{24} + \frac{\sqrt{6} b \operatorname{atan}{\left (\frac{\sqrt{6} x^{2}}{2} \right )}}{12} + \frac{d \log{\left (3 x^{4} + 2 \right )}}{12} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((d*x**3+b*x+a)/(3*x**4+2),x)

[Out]

-6**(3/4)*a*log(3*x**2 - 6**(3/4)*x + sqrt(6))/48 + 6**(3/4)*a*log(3*x**2 + 6**(
3/4)*x + sqrt(6))/48 + 6**(3/4)*a*atan(6**(1/4)*x - 1)/24 + 6**(3/4)*a*atan(6**(
1/4)*x + 1)/24 + sqrt(6)*b*atan(sqrt(6)*x**2/2)/12 + d*log(3*x**4 + 2)/12

_______________________________________________________________________________________

Mathematica [A]  time = 0.130159, size = 128, normalized size = 0.83 \[ \frac{1}{48} \left (-2 \sqrt{6} \left (\sqrt [4]{6} a+2 b\right ) \tan ^{-1}\left (1-\sqrt [4]{6} x\right )+2 \sqrt{6} \left (\sqrt [4]{6} a-2 b\right ) \tan ^{-1}\left (\sqrt [4]{6} x+1\right )-6^{3/4} a \log \left (\sqrt{6} x^2-2 \sqrt [4]{6} x+2\right )+6^{3/4} a \log \left (\sqrt{6} x^2+2 \sqrt [4]{6} x+2\right )+4 d \log \left (3 x^4+2\right )\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[(a + b*x + d*x^3)/(2 + 3*x^4),x]

[Out]

(-2*Sqrt[6]*(6^(1/4)*a + 2*b)*ArcTan[1 - 6^(1/4)*x] + 2*Sqrt[6]*(6^(1/4)*a - 2*b
)*ArcTan[1 + 6^(1/4)*x] - 6^(3/4)*a*Log[2 - 2*6^(1/4)*x + Sqrt[6]*x^2] + 6^(3/4)
*a*Log[2 + 2*6^(1/4)*x + Sqrt[6]*x^2] + 4*d*Log[2 + 3*x^4])/48

_______________________________________________________________________________________

Maple [A]  time = 0.003, size = 140, normalized size = 0.9 \[{\frac{a\sqrt{3}\sqrt [4]{6}\sqrt{2}}{24}\arctan \left ({\frac{\sqrt{2}\sqrt{3}{6}^{{\frac{3}{4}}}x}{6}}+1 \right ) }+{\frac{a\sqrt{3}\sqrt [4]{6}\sqrt{2}}{24}\arctan \left ({\frac{\sqrt{2}\sqrt{3}{6}^{{\frac{3}{4}}}x}{6}}-1 \right ) }+{\frac{a\sqrt{3}\sqrt [4]{6}\sqrt{2}}{48}\ln \left ({1 \left ({x}^{2}+{\frac{\sqrt{3}\sqrt [4]{6}x\sqrt{2}}{3}}+{\frac{\sqrt{6}}{3}} \right ) \left ({x}^{2}-{\frac{\sqrt{3}\sqrt [4]{6}x\sqrt{2}}{3}}+{\frac{\sqrt{6}}{3}} \right ) ^{-1}} \right ) }+{\frac{b\sqrt{6}}{12}\arctan \left ({\frac{{x}^{2}\sqrt{6}}{2}} \right ) }+{\frac{d\ln \left ( 3\,{x}^{4}+2 \right ) }{12}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((d*x^3+b*x+a)/(3*x^4+2),x)

[Out]

1/24*a*3^(1/2)*6^(1/4)*2^(1/2)*arctan(1/6*2^(1/2)*3^(1/2)*6^(3/4)*x+1)+1/24*a*3^
(1/2)*6^(1/4)*2^(1/2)*arctan(1/6*2^(1/2)*3^(1/2)*6^(3/4)*x-1)+1/48*a*3^(1/2)*6^(
1/4)*2^(1/2)*ln((x^2+1/3*3^(1/2)*6^(1/4)*x*2^(1/2)+1/3*6^(1/2))/(x^2-1/3*3^(1/2)
*6^(1/4)*x*2^(1/2)+1/3*6^(1/2)))+1/12*b*arctan(1/2*x^2*6^(1/2))*6^(1/2)+1/12*d*l
n(3*x^4+2)

_______________________________________________________________________________________

Maxima [A]  time = 1.55219, size = 231, normalized size = 1.5 \[ \frac{1}{144} \cdot 3^{\frac{3}{4}} 2^{\frac{3}{4}}{\left (2 \cdot 3^{\frac{1}{4}} 2^{\frac{1}{4}} d + 3 \, a\right )} \log \left (\sqrt{3} x^{2} + 3^{\frac{1}{4}} 2^{\frac{3}{4}} x + \sqrt{2}\right ) + \frac{1}{144} \cdot 3^{\frac{3}{4}} 2^{\frac{3}{4}}{\left (2 \cdot 3^{\frac{1}{4}} 2^{\frac{1}{4}} d - 3 \, a\right )} \log \left (\sqrt{3} x^{2} - 3^{\frac{1}{4}} 2^{\frac{3}{4}} x + \sqrt{2}\right ) + \frac{1}{24} \, \sqrt{3}{\left (3^{\frac{1}{4}} 2^{\frac{3}{4}} a - 2 \, \sqrt{2} b\right )} \arctan \left (\frac{1}{6} \cdot 3^{\frac{3}{4}} 2^{\frac{1}{4}}{\left (2 \, \sqrt{3} x + 3^{\frac{1}{4}} 2^{\frac{3}{4}}\right )}\right ) + \frac{1}{24} \, \sqrt{3}{\left (3^{\frac{1}{4}} 2^{\frac{3}{4}} a + 2 \, \sqrt{2} b\right )} \arctan \left (\frac{1}{6} \cdot 3^{\frac{3}{4}} 2^{\frac{1}{4}}{\left (2 \, \sqrt{3} x - 3^{\frac{1}{4}} 2^{\frac{3}{4}}\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x^3 + b*x + a)/(3*x^4 + 2),x, algorithm="maxima")

[Out]

1/144*3^(3/4)*2^(3/4)*(2*3^(1/4)*2^(1/4)*d + 3*a)*log(sqrt(3)*x^2 + 3^(1/4)*2^(3
/4)*x + sqrt(2)) + 1/144*3^(3/4)*2^(3/4)*(2*3^(1/4)*2^(1/4)*d - 3*a)*log(sqrt(3)
*x^2 - 3^(1/4)*2^(3/4)*x + sqrt(2)) + 1/24*sqrt(3)*(3^(1/4)*2^(3/4)*a - 2*sqrt(2
)*b)*arctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x + 3^(1/4)*2^(3/4))) + 1/24*sqrt(3)*
(3^(1/4)*2^(3/4)*a + 2*sqrt(2)*b)*arctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x - 3^(1
/4)*2^(3/4)))

_______________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x^3 + b*x + a)/(3*x^4 + 2),x, algorithm="fricas")

[Out]

Exception raised: NotImplementedError

_______________________________________________________________________________________

Sympy [A]  time = 2.2686, size = 199, normalized size = 1.29 \[ \operatorname{RootSum}{\left (165888 t^{4} - 55296 t^{3} d + t^{2} \left (3456 b^{2} + 6912 d^{2}\right ) + t \left (- 864 a^{2} b - 576 b^{2} d - 384 d^{3}\right ) + 27 a^{4} + 72 a^{2} b d + 18 b^{4} + 24 b^{2} d^{2} + 8 d^{4}, \left ( t \mapsto t \log{\left (x + \frac{27648 t^{3} b^{2} + 1728 t^{2} a^{2} b - 6912 t^{2} b^{2} d + 216 t a^{4} - 288 t a^{2} b d + 288 t b^{4} + 576 t b^{2} d^{2} - 18 a^{4} d - 90 a^{2} b^{3} + 12 a^{2} b d^{2} - 24 b^{4} d - 16 b^{2} d^{3}}{27 a^{5} - 72 a b^{4}} \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x**3+b*x+a)/(3*x**4+2),x)

[Out]

RootSum(165888*_t**4 - 55296*_t**3*d + _t**2*(3456*b**2 + 6912*d**2) + _t*(-864*
a**2*b - 576*b**2*d - 384*d**3) + 27*a**4 + 72*a**2*b*d + 18*b**4 + 24*b**2*d**2
 + 8*d**4, Lambda(_t, _t*log(x + (27648*_t**3*b**2 + 1728*_t**2*a**2*b - 6912*_t
**2*b**2*d + 216*_t*a**4 - 288*_t*a**2*b*d + 288*_t*b**4 + 576*_t*b**2*d**2 - 18
*a**4*d - 90*a**2*b**3 + 12*a**2*b*d**2 - 24*b**4*d - 16*b**2*d**3)/(27*a**5 - 7
2*a*b**4))))

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.225803, size = 169, normalized size = 1.1 \[ \frac{1}{24} \,{\left (6^{\frac{3}{4}} a - 2 \, \sqrt{6} b\right )} \arctan \left (\frac{3}{4} \, \sqrt{2} \left (\frac{2}{3}\right )^{\frac{3}{4}}{\left (2 \, x + \sqrt{2} \left (\frac{2}{3}\right )^{\frac{1}{4}}\right )}\right ) + \frac{1}{24} \,{\left (6^{\frac{3}{4}} a + 2 \, \sqrt{6} b\right )} \arctan \left (\frac{3}{4} \, \sqrt{2} \left (\frac{2}{3}\right )^{\frac{3}{4}}{\left (2 \, x - \sqrt{2} \left (\frac{2}{3}\right )^{\frac{1}{4}}\right )}\right ) + \frac{1}{48} \,{\left (6^{\frac{3}{4}} a + 4 \, d\right )}{\rm ln}\left (x^{2} + \sqrt{2} \left (\frac{2}{3}\right )^{\frac{1}{4}} x + \sqrt{\frac{2}{3}}\right ) - \frac{1}{48} \,{\left (6^{\frac{3}{4}} a - 4 \, d\right )}{\rm ln}\left (x^{2} - \sqrt{2} \left (\frac{2}{3}\right )^{\frac{1}{4}} x + \sqrt{\frac{2}{3}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x^3 + b*x + a)/(3*x^4 + 2),x, algorithm="giac")

[Out]

1/24*(6^(3/4)*a - 2*sqrt(6)*b)*arctan(3/4*sqrt(2)*(2/3)^(3/4)*(2*x + sqrt(2)*(2/
3)^(1/4))) + 1/24*(6^(3/4)*a + 2*sqrt(6)*b)*arctan(3/4*sqrt(2)*(2/3)^(3/4)*(2*x
- sqrt(2)*(2/3)^(1/4))) + 1/48*(6^(3/4)*a + 4*d)*ln(x^2 + sqrt(2)*(2/3)^(1/4)*x
+ sqrt(2/3)) - 1/48*(6^(3/4)*a - 4*d)*ln(x^2 - sqrt(2)*(2/3)^(1/4)*x + sqrt(2/3)
)